Water Quality Supplement 5.10

Calibration Data Work Sheet

School	Class Date					
Student Group						
DISSOLVED OXYGEN						
Temperature of distilled water	°C	Elevation	n of site	meters		
Dissolved	d Oxygen for the	e shaken distill	ed water			
Observer #1	Observer #2					
mg/L		mg/L		mg/L		
Average = mg/L		Ţ.		J		
Solubility of Oxygen in Water	Calibration Va	alue	Expected Value	e for DO		
for your temperature at sea	for your eleva	ation	in your distilled			
level from Table	from Table		•			
mg/L		Χ		=mg/L		
Kit manufacturer and model _						
ALKANLINITY for Baking So	r kits that read					
Observer #1	Observer #2		Observer #3			
mg/L as CaCO₃	mg/L as CaCo₃ mg/L as CaCO₃					
Average = mg/L as CaCO ₃						
Hach kits	or other kits in v	which drops are	e counted			
	Observer #1	Observer #2	Observer #3	Average		
Number of Drops						
Conversion Constant for						
your kit and procedure	X	X	X	X		
Total Alkalinity						
(mg/L as CaCO ₃)	/1					
	=mg/L	=mg/L	=mg/L	=mg/L		
Kit manufacturer and model _	=mg/L	=mg/L	=mg/L	=mg/L		
NITRATE		=mg/L		=mg/L		
NITRATE Observer #1	Observer #2		Observer #3			
NITRATE Observer #1 mg/L NO ₃ - N	Observer #2	ng/L NO ₃ - N	Observer #3	ng/L NO ₃ - N		
NITRATE Observer #1	Observer #2		Observer #3			

Water Quality Supplement 5.11

<u>Data</u> Work Sheet

School	·····	Class	Date	
Student Group				
Site Name				
Sample collection date				
WATER TEMPERATURE		、	,	
Oh	01		01	
Observer#1 °C	Observer #2	°C	Observer #3	°C
°C Average =°C		<u> </u>		C
DISSOLVED OXYGEN				
Observer #1	Observer #2		Observer #3	
mg/L	0.0001101.712			mg/L
Average = mg/L				
Kit manufacturer and model_				
рН				
Measurement method:	pen	me	ter	
Value of buffers at site: pl	H 4	pH 7	pH 10	_
Observer #1	Observer #2		Observer #3	
	0.000.101			
Average =				
CONDUCTIVITY				
Conductivity Standard:		MicoSiemen	s/cm (μS/cm)	
Observer #1	Observer #2		Observer #3	
μS/cm		μS/cm		S/cm
Average = μS/cm				

ALKALINITY

For kits that read alkalinity directly

Observer #1	Observer #2	Observer #3
mg/L as CaCO ₃	mg/L as CaCO₃	mg/L as CaCO₃
	00	

Average = $__$ mg/L as CaCO₃

For Hach kits or other kits in which drops are counted

	Observer #1	Observer #2	Observer #3
Number of Drops			
Conversion Constant			
for your kit and procedure	X	X	Χ
Total Alkalinity (mg/L as CaCO3)	= mg/L	= mg/L	= mg/L

Kit manufacturer and model					
NITRATE					
Observer #I: mg/L NO_3^- - $N = NO_2^-$ - N	mg/L NO ₂ - N				
Observer #2: mg/L NO_3^- - $N = NO_2^-$ - N	mg/L NO ₂ - N				
Observer #3: mg/L NO_3^- - $N = NO_2^-$ - N	mg/L NO ₂ - N				
Average = mg/L $NO_3^ N = NO_2^ N$	mg/L NO ₂ - N				
Kit manufacturer and model					

Water Quality Supplement 5.12

Solubility of Oxygen in Water Table

Exposed to Air at 750mm Hg Pressure

TEMP °C	Solubility mg/L	TEMP °C	Solubility mg/L	TEMP °C	Solubility mg/L
0	14.6	16	9.9	32	7.3
1	14.2	17	9.7	33	7.2
2	13.8	18	9.5	34	7.1
3	13.5	19	9.3	35	7.0
4	13.1	20	9.1	36	6.8
5	12.8	21	8.9	37	6.7
6	12.5	22	8.7	38	6.6
7	12.1	23	8.6	39	6.5
8	11.9	24	8.4	40	6.4
9	11.6	25	8.3	41	6.3
10	11.3	26	8.1	42	6.2
11	11.0	27	8.0	43	6.1
12	10.8	28	7.8	44	6.0
13	10.5	29	7.7	45	5.9
14	10.3	30	7.6	46	5.8
15	10.1	31	7.4	47	5.7

Water Quality Supplement 5.13

Calibration Values Table

For Various Atmospheric Pressures and Altitudes

Pressure	mm Hg	Pressure	kPa	Elevation m	Calibration Value %
	768		102.3	-84	1.01
	760		101.3	0	1
	752		100.3	85	0.99
	745		99.3	170	0.98
	787		98.8	256	0.97
	730		97.3	343	0.96
	722		96.3	431	0.95
	714		95.2	519	0.94
	707		94.2	608	0.93
	699		93.2	698	0.92
	692		92.2	789	0.91
	684		91.2	880	0.9
	676		90.2	972	0.89
	669		89.2	1066	0.88
	661		88.2	1160	0.87
	654		87.1	1254	0.86
	646		86.1	1350	0.85
	638		85.1	1447	0.84
	631		84.1	1544	0.83
	623		83.1	1643	0.82
	616		82.1	1743	0.81
	608		81.1	1843	8.0
	600		80	1945	0.79
	593		79	2047	0.78
	585		78	2151	0.77
	578		77	2256	0.76
	570		76	2362	0.75
	562		75	2469	0.74
	555		74	2577	0.73
	547		73	2687	0.72
	540		71.9	2797	0.71
	532		70.9	2909	0.7
	524		69.6	3203	0.69
	517		68.9	3137	0.68
	509		67.9	3253	0.67
-	502		66.9	3371	0.66

Look at the Calibration Value Table corresponding to your elevation in meters and record it on the Calibration Data Work Sheet.

Example

An elevation of 1,544 meters has a corresponding saturation calibration value of 0.83.

Multiply the solubility of oxygen found in the second step by the calibration found in the third step. Example: At an altitude of 1,544 meters and a temperature of 22° C, you multiply (8.74 mg/L) x (0.83) = 7.25.

This value (7.25 in the example) is your expected value for a shaken, distilled water standard.

Compare this value to the value for DO that you found when you tested your shaken, distilled water standard. If the value is not within 0.4mg/L (LaMotte kit) or 1mg/L (Hach kit), try the measurement again on the distilled water. If it is still off, but by less than 1mg/L, record the DO value on the Calibration Data Work Sheet.

If you get a difference of more than 1mg/L, report the value you get and replace the chemicals in your test kit before making any more measurements. Recalibrate when you get fresh chemicals.